# Module 1

| Chapter 1 : | Kinetics of Rigid Bodies and Basic |             |  |
|-------------|------------------------------------|-------------|--|
|             | Kinematics                         | 1-1 to 1-84 |  |

| <b>1.1 Kinetics of Rigid Bodies :</b> Concept of mass moment |
|--------------------------------------------------------------|
| of inertia and its application to standard objects.          |

Kinetics of rigid bodies: Work and energy

Kinetic energy in translating motion, Rotation about fixed axis and in general plane motion, Work energy principle and Conservation of energy

**1.2 Basic Kinematics :** Structure, Machine, Mechanism, Kinematic link & its types, Kinematic pairs, Types of constrained motions, Types of Kinematic pairs, Kinematic chains, Types of joints, Degree of freedom (mobility), Kutzbach mobility criterion, Grubler's criterion & its limitations

Four bar chain and its inversions, Grashoff's law, Slider crank chain and its inversions, Double slider crank chain and its inversions

| 1.1                                   | Simple Harmonic Motion (S.H.M.)1-2                                                              |
|---------------------------------------|-------------------------------------------------------------------------------------------------|
| 1.1.1                                 | Period of Oscillation1-2                                                                        |
| 1.2                                   | Some Important Definitions in S.H.M1-2                                                          |
| 1.2.1                                 | Amplitude of Oscillation1-2                                                                     |
| 1.2.2                                 | Time Period1-2                                                                                  |
| 1.2.3                                 | Frequency 1-2                                                                                   |
| 1.3                                   | Pendulum Motion1-2                                                                              |
| 1.3.1                                 | Simple Pendulum1-2                                                                              |
| 1.3.2                                 | Compound Pendulum1-3                                                                            |
| 1.3.3                                 | Torsional Pendulum1-4                                                                           |
| 1.4                                   | Mass Moment of Inertia1-4                                                                       |
|                                       |                                                                                                 |
| 1.5                                   | Mass M.I. w.r.t. Co-ordinate Axis1-4                                                            |
| 1.5<br>1.6                            | Mass M.I. w.r.t. Co-ordinate Axis1-4 Parallel Axis Theorem1-5                                   |
|                                       |                                                                                                 |
| 1.6                                   | Parallel Axis Theorem1-5                                                                        |
| 1.6<br>1.7                            | Parallel Axis Theorem1-5  Mass Moment of Inertia of Some Bodies1-5                              |
| 1.6<br>1.7                            | Parallel Axis Theorem1-5  Mass Moment of Inertia of Some Bodies1-5  Mass M.I. of Uniform Rod of |
| <b>1.6 1.7</b> 1.7.1                  | Parallel Axis Theorem                                                                           |
| 1.6<br>1.7<br>1.7.1                   | Parallel Axis Theorem                                                                           |
| 1.6<br>1.7<br>1.7.1<br>1.7.2<br>1.7.3 | Parallel Axis Theorem                                                                           |

| 1.7.7  | M.I. of a Solid Sphere1-7                                                 |  |  |
|--------|---------------------------------------------------------------------------|--|--|
| 1.8    | Equations of Plane Motion : D'Alembert's Principle1-12                    |  |  |
| 1.9    | Applications to Different Types of Motion1-13                             |  |  |
| 1.9.1  | Motion of Translation1-13                                                 |  |  |
| 1.9.2  | Centroidal Rotation1-13                                                   |  |  |
| 1.9.3  | Non Centroidal Rotation1-13                                               |  |  |
| 1.10   | Motion of Rolling Bodies1-13                                              |  |  |
| 1.10.1 | A Wheel Rolls without Slipping1-13                                        |  |  |
| 1.10.2 | Slipping of Roller1-13                                                    |  |  |
| 1.11   | Application of D'Alembert's Principle for Bars, Cylinders and Spheres1-13 |  |  |
| 1.12   | Work Done1-27                                                             |  |  |
| 1.12.1 | W.D. by Constant External Force = $F \times s$ 1-27                       |  |  |
| 1.12.2 | W.D. by Gravitational Force = mgh1-27                                     |  |  |
| 1.12.3 | W.D. by Frictional Force1-27                                              |  |  |
| 1.12.4 | W.D. by Spring Force1-27                                                  |  |  |
| 1.12.5 | W.D. by a Couple or Moment1-27                                            |  |  |
| 1.13   | Kinetic Energy1-27                                                        |  |  |
| 1.13.1 | K.E. of Translation1-27                                                   |  |  |
| 1.13.2 | K.E. of Rotation1-27                                                      |  |  |
| 1.14   | Work Energy Principle1-28                                                 |  |  |
| 1.15   | Principle of Conservation of Energy1-28                                   |  |  |
| 1.16   | Introduction to Theory of Machine1-36                                     |  |  |
| 1.17   | Kinematic Link or Element1-37                                             |  |  |
| 1.17.1 | Types of Links1-37                                                        |  |  |
| 1.17.2 | Types of Rigid Links1-38                                                  |  |  |
| 1.18   | Machine1-38                                                               |  |  |
| 1.19   | Structure1-39                                                             |  |  |
| 1.19.1 | Difference between a Structure and Machine1-39                            |  |  |
| 1.20   | Constrained Motions1-39                                                   |  |  |
| 1.21   | Kinematic Pair1-40                                                        |  |  |
| 1.22   | Kinematic Chain1-43                                                       |  |  |
| 1.23   | Types of Joints in a Kinematic Chain1-44                                  |  |  |
| 1.23.1 | Difference between Binary Link and Binary Joint1-45                       |  |  |
| 1.24   | Closed and Open Kinematic Chain1-46                                       |  |  |
| 1.25   | Mechanism1-47                                                             |  |  |
| 1.25.1 | Difference between Mechanism and a Machine1-47                            |  |  |
| 1.26   | Inversion of a Kinematic Chain1-47                                        |  |  |



| 1.26.1                           | Inversions of Four Bar Kinematic Chain1-48                                                                        |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1.26.2                           | Inversions of Single Slider Kinematic Chain 1-51                                                                  |
| 1.26.3                           | Inversions of Double Slider Kinematic Chain 1-54                                                                  |
| 1.27                             | Grashoff's Law1-59                                                                                                |
| 1.27.1                           | Class - I four bar linkage (s + $l$ < p + q) 1-59                                                                 |
| 1.27.2                           | Class - II Four Bar Linkage(s + $l > p + q$ )1-60                                                                 |
| 1.27.3                           | Special Cases of Four                                                                                             |
|                                  | Bar Linkage $(s + l = p + q)$ 1-61                                                                                |
| 1.28                             | Degree of Freedom (DOF)1-63                                                                                       |
|                                  |                                                                                                                   |
| 1.29                             | Mobility and Degree of Freedom (DOF)1-64                                                                          |
| 1.29<br>1.30                     | Mobility and Degree of Freedom (DOF)1-64 Kutzbach Criterion1-65                                                   |
|                                  |                                                                                                                   |
| 1.30                             | Kutzbach Criterion1-65                                                                                            |
| 1.30<br>1.31                     | Kutzbach Criterion                                                                                                |
| 1.30<br>1.31<br>1.31.1           | Kutzbach Criterion1-65Grubler's Criterion1-65Application of Grubler's Criterion1-67                               |
| 1.30<br>1.31<br>1.31.1           | Kutzbach Criterion                                                                                                |
| 1.30<br>1.31<br>1.31.1<br>1.31.2 | Kutzbach Criterion1-65Grubler's Criterion1-65Application of Grubler's Criterion1-67Minimum Number of Links in1-69 |

### Chapter 2: Special Mechanisms 2-1 to 2-29

| 2.1 | Straight     | line  | gene       | rating     | mech    | anisms     | :   |
|-----|--------------|-------|------------|------------|---------|------------|-----|
|     | Introduction | to    | Exact      | straight   | line    | generati   | ng  |
|     | mechanisms   | - Pe  | eaucillier | 's and H   | art's N | ∕lechanisn | ns, |
|     | Introduction | to A  | pproxim    | ate Straig | ht line | generati   | ng  |
|     | mechanisms   | ;     | Watt's,    | Grasshop   | oper    | mechanis   | m,  |
|     | Tchebicheff' | s mec | hanisms    | ;          |         |            |     |
|     |              |       |            |            |         |            |     |

- 2.2 Offset slider crank mechanisms: Pantograph, Hook-joint (single and double).
- 2.3 Steering Gear Mechanisms : Ackerman, Davis steering gears

| 2.1   | Pantograph2-2                                                                                           |
|-------|---------------------------------------------------------------------------------------------------------|
| 2.2   | Straight Line Generating Mechanisms2-3                                                                  |
| 2.2.1 | Exact Straight Line Generating Mechanisms2-3                                                            |
| 2.2.2 | Approximate Straight Line Generating Mechanisms2-5                                                      |
| 2.3   | Automobile Steering Gear Mechanism2-8                                                                   |
| 2.3.1 | Davis Steering Gear Mechanism2-9                                                                        |
| 2.3.2 | Ackermann Steering Gear Mechanism2-11                                                                   |
| 2.3.3 | Differentiate between 'Davis Steering Gear<br>Mechanism' and 'Ackermann Steering Gear<br>Mechanism'2-12 |
|       | Mechanish2-12                                                                                           |

| 2.4   | Hooke's Joint or Universal Coupling2-13            |
|-------|----------------------------------------------------|
| 2.4.1 | Hooke's Joint Analysis2-14                         |
| 2.4.2 | Maximum and Minimum Speeds of the Driven Shaft2-15 |
| 2.4.3 | For Equal Speeds of Driving and Driven Shafts2-15  |
| 2.4.4 | Maximum Fluctuation of Speed of Driven Shaft2-16   |
| 2.4.5 | Polar Diagram2-16                                  |
| 2.4.6 | Angular Acceleration of Driven Shaft2-16           |
| 2.4.7 | Double Hooke's Joint2-16                           |
| 2.5   | Offset Slider Crank Mechanism2-26                  |
|       | Module 3                                           |

### Chapter 3: Velocity and Acceleration Analysis of Mechanisms 3-1 to 3-89

3.1 Velocity Analysis of Mechanisms (mechanisms up to 6 links) Velocity analysis by instantaneous centre of rotation method (Graphical approach), Velocity analysis by relative velocity method (Graphical approach)

# 3.2 Acceleration Analysis of Mechanisms (mechanisms up to 6 links) Acceleration analysis by relative method including pairs involving Coriolis acceleration (Graphical approach)

| 3.1   | Introduction 3-2                                                 |
|-------|------------------------------------------------------------------|
| 3.2   | Linear and Angular Velocity3-2                                   |
| 3.3   | $Representation \ of \ Velocity \ by \ Vectors3-2$               |
| 3.4   | Velocity Analysis by Relative<br>Velocity Method3-3              |
| 3.4.1 | Relative Velocity of Two Bodies having their Absolute Motions3-3 |
| 3.4.2 | Velocity Diagram of a Rigid Link3-4                              |
| 3.5   | Rubbing Velocity at a Pin Joint3-5                               |
| 3.6   | Mechanical Advantage3-5                                          |
| 3.7   | Applications of the Relative Velocity Method3-5                  |
| 3.8   | Velocity Analysis by Instantaneous Centre Method3-16             |
| 3.8.1 | Velocity of a Point on a Link by Instantaneous Centre Method3-16 |

| 3.8.2  | Number of Instantaneous Centres in a Mechanism3-17                        |
|--------|---------------------------------------------------------------------------|
| 3.8.3  | Location of Instantaneous Centres by Inspection                           |
| 3.8.4  | Types of Instantaneous Centres3-17                                        |
| 3.8.5  | Properties of the Instantaneous Centre3-18                                |
| 3.8.6  | Centrodes                                                                 |
| 3.9    | Three Centres in Line Theorem                                             |
|        | (Aronhold - Kennedy's Theorem) 3-18                                       |
| 3.10   | Steps to Locate Instantaneous Centres 3-19                                |
| 3.11   | Angular Velocity Ratio Theorem3-20                                        |
| 3.12   | Freudenstein's Theorem3-20                                                |
| 3.13   | Acceleration Analysis by Relative Velocity Method3-42                     |
| 3.14   | Linear and Angular Acceleration3-42                                       |
| 3.15   | Motion of a Particle Moving in a Circular Path3-42                        |
| 3.15.1 | Tangential Acceleration, f <sup>t</sup>                                   |
| 3.15.2 | Centripetal Acceleration, f <sup>c</sup> 3-43                             |
| 3.15.3 | Total Acceleration, f3-43                                                 |
| 3.16   | Acceleration Diagram of a Link by Relative Acceleration Method3-43        |
| 3.17   | Outline Procedure of Drawing the Acceleration Diagram of a Mechanism 3-44 |
| 3.18   | Coriolis Component of Acceleration 3-64                                   |
| 3.18.1 | Magnitude of Coriolis Component of Acceleration3-65                       |
| 3.18.2 | Method of Finding the Direction of Coriolis Component                     |
|        |                                                                           |

# Module 4

# Chapter 4: CAM Mechanisms 4-1 to 4-38

- 4.1 Cam and its Classification based on shape, follower movement, and manner of constraint of follower; Followers and its Classification based on shape, movement, and location of line of movement; Cam and follower terminology
- **4.2 Motions** of the follower: SHM, Constant acceleration and deceleration (parabolic), Constant velocity, Cycloidal; Introduction to cam profiles (No problems on this point)

| 4.1   | Introduction4-2                                                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.2   | Classification of Followers 4-2                                                                                                                       |
| 4.3   | Classification of Cams4-3                                                                                                                             |
| 4.3.1 | Classification of Cam According to Types of Shape4-3                                                                                                  |
| 4.3.2 | Classification of Cam According to  Type of Follower Movement4-4                                                                                      |
| 4.3.3 | Classification of Cam According to  Type of Constraint of the Follower4-5                                                                             |
| 4.4   | Terminology and Definitions4-6                                                                                                                        |
| 4.5   | Types of Motions of the Follower4-6                                                                                                                   |
| 4.6   | Motion of Follower with Uniform Velocity 4-7                                                                                                          |
| 4.6.1 | Analytical Solution for Calculation of Displacement Velocity, Acceleration and Jerk of Follower having Uniform Velocity4-7                            |
| 4.7   | Motion of Follower with Simple Harmonic Motion4-8                                                                                                     |
| 4.7.1 | Method of Drawing the Displacement Diagram 4-8                                                                                                        |
| 4.7.2 | Analytical Solution for Calculation of Displacement, Velocity, Acceleration and Jerk of Follower having Simple Harmonic Motion4-9                     |
| 4.8   | Motion of Follower with Uniform Acceleration and Retardation4-10                                                                                      |
| 4.8.1 | Method of Drawing the Displacement Diagram4-11                                                                                                        |
| 4.8.2 | Analytical Solution for Calculation of Displacement<br>Velocity, Acceleration and Jerk of Follower having<br>Uniform Acceleration and Retardation4-11 |
| 4.9   | Motion of Follower with Cycloidal Motion4-12                                                                                                          |
| 4.9.1 | Method of Drawing the Displacement Diagram4-12                                                                                                        |
| 4.9.2 | Analytical Solution for Calculation of Displacement, Velocity, Acceleration and Jerk of Follower having Cycloidal Motion4-12                          |
| 4.10  | Determination of Cam Profile for a given Follower Motions4-15                                                                                         |





# Module 5

| Chapter 5: | Belts, Chains and Breaks | 5-1 to 5-54 |
|------------|--------------------------|-------------|
|            |                          |             |

| 5.1 Belts | :     | Int  | rodu  | uction,   | Types  | ar  | nd     | all    | other |
|-----------|-------|------|-------|-----------|--------|-----|--------|--------|-------|
| fundar    | nent  | tals | of    | belting,  | Dynam  | nic | ana    | alysis | -belt |
| tensio    | าร, c | ond  | itior | n of maxi | mum po | owe | er tra | nsmi   | ssion |

- **5.2 Chains (No problems) :** types of chains, chordal action, variation in velocity ratio, length of chain (No problems)
- **5.3 Brakes (No problems) :** Introduction, types and working principles, Introduction to braking of vehicles

| 5.1    | Introduction to Belt and Rope Drive5-2                          |
|--------|-----------------------------------------------------------------|
| 5.2    | Types of Belts5-2                                               |
| 5.2.1  | Materials used for Belt and Rope Drives5-2                      |
| 5.2.2  | Selection of Belt Drive5-3                                      |
| 5.3    | Types of Belt Drives5-3                                         |
| 5.4    | Crowning of Pulley5-4                                           |
| 5.5    | Law of Belting5-5                                               |
| 5.6    | Velocity Ratio of Belt Drive5-5                                 |
| 5.6.1  | Velocity Ratio of Open Belt Drive5-5                            |
| 5.6.2  | Velocity Ratio of Compound Belt Drive5-6                        |
| 5.7    | Slip of Belt5-6                                                 |
| 5.8    | Creep of Belt5-7                                                |
| 5.9    | Length of Belt5-9                                               |
| 5.9.1  | Length of an Open Belt Drive5-9                                 |
| 5.9.2  | Length of Cross Belt Drive5-10                                  |
| 5.10   | Angle of Contact or Angle of Lap 5-11                           |
| 5.11   | Limiting Tension Ratio 5-11                                     |
| 5.12   | $Limiting\ Tension\ Ratio\ in\ V-belt\ or\ Rope5-12$            |
| 5.13   | Centrifugal Tension in Belt 5-15                                |
| 5.14   | Stress Induced in Belt 5-15                                     |
| 5.15   | Power Transmitted by Belt 5-16                                  |
| 5.16   | Maximum Power Transmitted by Belt5-19                           |
| 5.17   | Initial Tension in the Belt 5-23                                |
| 5.18   | Rope Drive 5-31                                                 |
| 5.18.1 | Types of Rope Drives5-31                                        |
| 5.18.2 | Advantages and Limitations of Rope Drives over Other Drives5-31 |
|        |                                                                 |

| 5.19     | Chain Drive5-33                                                      |
|----------|----------------------------------------------------------------------|
| 5.20     | Advantages and Disadvantages of Chain                                |
|          | Drive over Belt or Rope Drive5-33                                    |
| 5.21     | Classification of Chains5-34                                         |
| 5.22     | Terms used in Chain Drive5-35                                        |
| 5.23     | Relation between Pitch and Pitch Circle Diameter5-35                 |
| 5.24     | Relation between Chain Speed and<br>Angular Velocity of Sprocket5-35 |
| 5.25     | Chordal Action5-36                                                   |
| 5.26     | Length of Chain5-37                                                  |
| 5.27     | Introduction to Brakes5-37                                           |
| 5.27.1   | General Requirements of a Good Braking System5-38                    |
| 5.27.2   | General Requirements of a Good Brake Lining Material5-38             |
| 5.28     | Classification of Brakes5-38                                         |
| 5.29     | Block or Shoe Brakes5-38                                             |
| 5.29.1   | Single Block or Shoe Brake5-39                                       |
| 5.29.1.1 | Self Locking and Self Energizing of Brakes5-41                       |
| 5.29.2   | Pivoted Block Brake (2θ > 60°)5-41                                   |
| 5.29.3   | Double Block or Shoe Brake5-41                                       |
| 5.30     | Band Brakes5-42                                                      |
| 5.30.1   | Simple Band Brake5-42                                                |
| 5.30.2   | Differential Band Brake5-43                                          |
| 5.30.2.1 | Self Locking and Self Energizing of                                  |
|          | Differential Band Brake5-44                                          |
| 5.31     | Band and Block Brake5-44                                             |
| 5.32     | Internal Expanding Shoe Brake5-45                                    |
| 5.32.1   | Braking Torque of an Internal Expanding Shoe Brake5-46               |
| 5.33     | Braking of a Vehicles5-47                                            |
| 5.34     | Hydraulic Brakes5-49                                                 |
| 5.34.1   | Construction5-49                                                     |
| 5.34.2   | Working Principle5-50                                                |
| 5.34.3   | Advantages of Hydraulic Brake System5-50                             |
| 5.34.4   | Disadvantages of Hydraulic Brake System5-50                          |
| 5.35     | Disc Brakes5-50                                                      |
| 5.36     | Pneumatic (Air) Brakes5-51                                           |



6.7

Law of Gearing (Condition for

Constant Velocity Ratio)......6-10

| Kir 🕏                                               | nematics of Machinery (MU)                                                                       | 5                  | Table of                                                                                   | Content |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------|---------|
| 5.36.1                                              | Working Principle5-51                                                                            | 6.8                | Velocity of Sliding of Teeth                                                               | 6-11    |
| 5.37                                                | Vacuum Brakes 5-51                                                                               | 6.9                | Conjugate Profile                                                                          | 6-11    |
|                                                     | Module 6                                                                                         | 6.9.1              | Graphical Construction of Conjugate Profile                                                | 6-11    |
| Chapte                                              | r 6 : Gears and Gear Trains 6-1 to 6-100                                                         | 6.10               | Forms of Gear Tooth Profile                                                                | 6-13    |
| 616                                                 | ears: Introduction, Types, Law of gearing, Forms of                                              | 6.10.1             | Cycloidal Profile                                                                          | 6-13    |
|                                                     | eth, Details of gear terminology, Path of contact,                                               | 6.10.2             | Involute Profile                                                                           | 6-13    |
|                                                     | rc of contact, Contact ratio, Interference in                                                    | 6.11               | Comparison of Cycloidal                                                                    |         |
|                                                     | volutes gears, Minimum number of teeth for sterference free motion, Methods to control           |                    | and Involute Tooth Gears                                                                   | 6-14    |
|                                                     | sterference in involutes gears, Static force analysis in                                         | 6.12               | Standard Tooth Profiles or Systems                                                         | 6-15    |
| gears - spur, helical, bevel, worm & worm wheel (No |                                                                                                  |                    | Length of Path of Contact                                                                  | 6-16    |
| рі                                                  | roblems on this point)                                                                           | 6.14               | Length of Arc of Contact                                                                   | 6-17    |
|                                                     | ear Trains: Kinematics and dynamic analysis of                                                   | 6.15               | Contact Ratio or Number of                                                                 |         |
|                                                     | mple and compound gear trains, reverted gear ains, epi-cycle gear trains with spur or bevel gear |                    | Pairs of Teeth in Contact                                                                  |         |
|                                                     | ombination.                                                                                      | 6.16               | Interference in Involute Gears                                                             |         |
| 6.1                                                 | Introduction6-2                                                                                  | 6.17               | Undercutting                                                                               | 6-33    |
| 6.2                                                 | History of Gears6-2                                                                              | 6.18               | Critical or Minimum Number of Teeth to Avoid Interference                                  | 6-33    |
| 6.3                                                 | Advantages and Disadvantages                                                                     | 6.18.1             | Minimum Number of Teeth on Pinion                                                          |         |
| 0.0                                                 | of Gear Drive6-2                                                                                 |                    | to Avoid Interference with Wheel                                                           | 6-34    |
| 6.4                                                 | Classification of Gears6-3                                                                       | 6.18.2             | Minimum Number of Teeth on Pinion                                                          |         |
| 6.4.1                                               | Classification of Gears According to the                                                         |                    | to Avoid Interference with Rack                                                            |         |
|                                                     | Position of Shaft Axis6-3                                                                        | 6.19               | Methods to Avoid Interference                                                              | 6-36    |
| 6.4.1.1                                             | Spur Gears6-3                                                                                    | 6.19.1             | Modified Profile of Tooth                                                                  | 6-36    |
| 6.4.1.2                                             | Helical Gears6-4                                                                                 | 6.19.2             | Modified Addendum of Pinion and Wheel                                                      | 6-36    |
| 6.4.1.3                                             | Rack and Pinion6-4                                                                               | 6.19.3             | Modified Center Distance between                                                           | 6.25    |
| 6.4.1.4                                             | Bevel Gears6-5                                                                                   |                    | Pinion and Wheel                                                                           | 6-3/    |
| 6.4.1.5                                             | Spiral Gears6-6                                                                                  | 6.20               | Effect of Center Distance Variation on Velocity Ratio                                      | 6-37    |
| 6.4.1.6                                             | Worm and Worm Wheel6-6                                                                           | 6.21               | Rack Shift                                                                                 |         |
| 6.4.2                                               | Classification of Gears According to the Peripheral Velocity of the Gears6-7                     | 6.22               | Friction between Gear Teeth                                                                | 6-39    |
| 6.4.3                                               | Classification of Gears According to                                                             | 6.23               | Static Force Analysis of Spur Gears                                                        |         |
|                                                     | Type of Meshing of Gears6-7                                                                      | <b>6.24</b> 6.24.1 | Force Analysis of Helical Gears                                                            | 6-57    |
| 6.5                                                 | 5 Comparison of Gears6-8                                                                         |                    | Relation between Normal Pressure Angle $(\phi_n)$ and Transverse Pressure Angle $(\phi_t)$ | 6-59    |
| 6.6                                                 | Gear Tooth Terminology6-8                                                                        |                    | - IP                                                                                       |         |

6.25

Static Force Analysis of Worm

and Worm Gear Pair.....6-60



| Kiner ** | matics of Machinery (MU)                          | 6    | Table of Contents                                               |
|----------|---------------------------------------------------|------|-----------------------------------------------------------------|
| 6.25.1   | Components of Force Acting on Worm6-60            | 6.30 | Simple Gear Train6-69                                           |
| 6.25.2   | Components of Force Acting on Worm Gear 6-61      | 6.31 | Compound Gear Train6-69                                         |
| 6.25.3 D | Direction of Components of Forces on              | 6.32 | Reverted Gear Train6-70                                         |
| V        | Norm and Worm Gear6-61                            | 6.33 | Design of Spur Gear Trains6-71                                  |
|          | Sliding Velocity in Worm and Worm Gear Pair6-62   | 6.34 | Epicyclic Gear Train6-75                                        |
| 6.27 E   | Efficiency of Worm and Worm Gear Pair 6-62        | 6.35 | Method of Finding Velocity Ratio of an Epicyclic Gear Train6-75 |
|          | Static Force Analysis of Straight Bevel Gears6-66 | 6.36 | Epicyclic Gear Train with Bevel Gears6-77                       |
|          | Introduction to Gear Train6-68                    | 6.37 | Torque and Tooth Load in Epicyclic Gear Train6-89               |



